
Microservices and DevOps

DevOps and Container Technology
Docker

Henrik Bærbak Christensen



The DevOps Problem

• Crossing boundaries, that is, moving code

Source: Torben Haagh, StiboSystems

CS@AU Henrik Bærbak Christensen 2



Was Solved in 1960’ies

CS@AU Henrik Bærbak Christensen 3



Docker = Container

CS@AU Henrik Bærbak Christensen 4



Definition

CS@AU Henrik Bærbak Christensen 5

(Docker web site, 2019)

That is, not just program/code, but the required 
execution environment



Containers are Virtual Machines

CS@AU Henrik Bærbak Christensen 6



A Virtual Machine

• Hardware Abstraction

– Virtual processor, memory, 

devices, etc.

• Virtualization Software

– Indirection: Decouple 

hardware and OS

– Multiplex physical 

hardware across guest 

VMs

CS@AU Henrik B Christensen 7



Types of VMs

• Smith & Nair 2005

• Two super classes

– Process VM

– System VM

• Both can be sub classed based upon supporting 

virtualization of same or different ISA (Instruction Set 

Architecture).

CS@AU Henrik B Christensen 8



Process / System VM

CS@AU Henrik B Christensen 9

Ex: Java VM

Ex: VMWare



Moving the boundary

• Mission: To make virtualization lightweight

Traditional VMs Docker

CS@AU Henrik Bærbak Christensen 10



Classifying Docker

• A Same-ISA Process VM

• Docker containers

provide a

virtual Linux OS

• Docker containers

typically execute a single process

• Ex: Run a RabbitMQ broker, an apache web server, …

CS@AU Henrik Bærbak Christensen 11



Docker Engine

The VMM of Docker



Images and Containers

• Core concepts in Docker

– Image The encapsulation of a VM

• I.e. the physical file that contains the VM – deployment unit

• Similar to a Java Jar file, DLL, .exe, war file, etc.

– Container The executing instance of an image

• Similar to an executing Java system, running the main() from the Jar 

file

– Docker Engine The VMM program on Linux (Windows)

• That handles images and executes containers

CS@AU Henrik Bærbak Christensen 13



Example

CS@AU Henrik Bærbak Christensen 14



Example

CS@AU Henrik Bærbak Christensen 15

‘docker’ = invoke docker engine

‘run’ = instantiate container from 
named image

‘hello-world’ = named image 
(parameter to ‘run’)



Host and Guest

• Now, you have two ”computers in one” – which is which?

• Host: The physical machine, providing CPU, RAM, etc.

• Guest: The virtual machine, handled by the VMM

• Of course, hosts often run multiple guests…

– And your laptop (host) runs M101 (guest) that is actually the 

host of the Docker guest !

CS@AU Henrik Bærbak Christensen 16



Linux LXC technologies

• Container

– Application running on a slice/view of a (shared) OS

• Linux LXC technology extended

– namespaces (isolation) provides an isolated share of OS 

resources

– cgroups (configuration) provides resource management of OS 

resources (RAM, cpu, …)

CS@AU Henrik Bærbak Christensen 17



Docker Image

CS@AU Henrik Bærbak Christensen 18



Images

• Onion file system: Copy-on-Write

– Every operation basically creates a new file layer

• Changing ‘hans.txt’ in layer N creates a (modified) copy of ‘hans.txt’ 

in layer N+1

• Base images = ‘prebaked file system’

– All layers up-till N forms an Image

• I.e. henrikbaerbak/cloudarch:e16.1

– Ubuntu 16.04 LTS server base image

– Java, Ant, Ivy, Git, … are all layered on top

CS@AU Henrik Bærbak Christensen 19

Layer N+1

Layer N

…

Base Layer



Building Images

• How do you build a traditional server?

– Unbox the machine, power up, install Linux, install application 

suite and libraries, execute server software

• Lifecycle - classic

– container = instantiate(image1)

• Docker run …

– modify container

• Install software, change files, add stuff, …

– commit container → image2

• Docker commit

Power up

Install your app

‘Freeze’ the machine

CS@AU Henrik Bærbak Christensen 20



Dockerfiles

Infrastructure-as-code

CS@AU Henrik Bærbak Christensen 21



Building Images

• Lifecycle – infrastructure-as-code

– You automate the install script: Dockerfile

• Example: henrikbaerbak/jdk8-gradle

CS@AU Henrik Bærbak Christensen 22



Anatomy

• State your base image

• Identify yourself

• Install software

– WORKDIR set working directory in container

– COPY copy <src> to <dest> (from host to cnt.)

– RUN run command at build time

• Configure

– EXPOSE expose port to the outside

• Execute

– (ENTRYPOINT) state default script to run

– CMD run command at run time (container process)
Imhotep Henrik Bærbak Christensen 23



Building Image

Imhotep Henrik Bærbak Christensen 24

-t = tag resulting image with given name
-f = dockerfile (default: Dockerfile)



Building Image

• When ‘build’ is executed the host and the container co-

exists and you typically copy files from host to image

• Dockerfile is typically in the project root folder!

– Version controlled along with project !!!

– Modifiability QA: Group related things together – Cohesion

CS@AU Henrik Bærbak Christensen 25

~/cave/build.gradle /root/cave/build.gradleCOPY

Host Image



Example

• Populate a DB

– Populate_db.py

• Runs against DB on

localhost:3306

• Exercise:

– What happens?

• To run

CS@AU Henrik Bærbak Christensen 26



CMD vrs RUN

• CMD = Execute

• RUN = Execute

• What is the difference???

• Big!

– RUN Execute at build time

• That is, during the ‘docker build .’ phase

– CMD Execute at container run time

• That is, when the ‘docker run …’ is executed

CS@AU Henrik Bærbak Christensen 27



No No’s

• Much to my dislike, Docker has opted for using a 

.dockerignore file

– Just like you have a .gitignore file

• Wildcard specs of files not to add to git staging area

• But! A Dockerfile is the infrastructure-code that explicitly

states what goes into an image!

– ”Ups, by the way, I regret copying *.BAK files into the image, 

please remove them again”

Imhotep Henrik Bærbak Christensen 28

Do not use .dockerignore !!! Except…



Infrastructure-as-code

• DevOps is about speed and agility in going from Dev to 

Ops

• Dockerfiles are one big piece of this puzzle: Installing the 

software on a server, is coded in a programming 

language, is under version control with your source !

CS@AU Henrik Bærbak Christensen 29



MultiStage DockerFiles

• From Engine 17.05+

• Idea

– Build in steps

• Step1: compile and assemble deployment unit (‘jar’ in Java)

• Step2: produce container with just the jar and ‘execute’ CMD

CS@AU Henrik Bærbak Christensen 30



Example Exercise

• From the mandatory project

• Step1:

– Install the full SkyCave system

– Finally RUN gradle to produce a ‘fatJar’ with full system in a 

single deployment unit

• Step2:

– Copy the fatJar from step1 and only that!

– CMD to start skycave daemon using the fatJar

CS@AU Henrik Bærbak Christensen 31



Docker Hub

Sharing Images



Docker Hub

• ‘Bootstrapping’ – where do I get the base layer from?

• Docker Hub is a public repository of a lot of (base) 

images

CS@AU Henrik Bærbak Christensen 33



Docker Hub

• The GitHub / Maven Repo movement

– ‘push’ your commits to a cloud base storage service

• Mvnrepository / github / bitbucket …

– ‘pull/clone’ from there

• Docker Hub

– Register as a user (free)

– Push your image to docker hub

– Done!

CS@AU Henrik Bærbak Christensen 34



Image Naming

• Images can be called any name

– Foobar, tmp, fiskesovs

• However, if you have to push them to the hub, they have 

to follow the convention:

– username/repository:tag

• Only one docker hub repository can be private

– I have called mine for ‘private’, and then use tags to differentiate 

different teaching images from each other...

CS@AU Henrik Bærbak Christensen 35



Container Lifecycle Management

Docker 101



We need to…

• Build images

• Execute containers

• Monitor containers

• Kill containers

CS@AU Henrik Bærbak Christensen 37



Images

• ‘pull’ = pull a named image from Hub

• ‘push’ = push a named image to Hub

CS@AU Henrik Bærbak Christensen 38



Containers

• run = (pull image), and start container (-d = in background)

• ps = see all running containers (-a = all, also the dead ones)

• images = see all images

• rm = remove container (-f =force, even if currently running)

CS@AU Henrik Bærbak Christensen 39

OldSchool: docker ps = 
NewSchool: docker container ls



Docker run

• Docker run (image) (command parameters)

– Acceptable parameters defined by the image!

• Zillion parameters, the most important are

– docker run –d : -d = daemon mode / server

– -ti: terminal interactive, so you can interact!

– --name (myname): give it a name 

– -p (host):(container): port-mapping

– --network=(network): define network to use

• See later…

CS@AU Henrik Bærbak Christensen 40



Containers

• ‘logs’ = See the log (shell output) of running container

• ‘logs –f’ = Tails the log (keeps running)

CS@AU Henrik Bærbak Christensen 41



Containers

• A container is very opaque 

– What the heck is going on inside it ???

– Where are the files located???

• ‘exec -ti (container) bash’ 

– Is: execute ‘bash’ interactive TTY in a running container

CS@AU Henrik Bærbak Christensen 42



Docker Networking

Microservices communicate, right?



Networking

• Distributed systems rely on networking!

• By default, network is an isolated resource in Docker!

– Ten Apache web servers, all listening on port 80, on the same 

machine!

• Two core technologies

– Port forwarding

• For ‘exposing’ container services to the outside/host

– Docker network drivers

• For ‘binding’ container services together securely

CS@AU Henrik Bærbak Christensen 44



Port Forwarding

• docker run -p 7777:6745 …

– Bind container port 6745 in container to host’s external port 7777

– So if you connect to ‘localhost:7777’ you will actually 

communicate with port 6745 of the service running in the docker

container

• Make docker services act like they are deployed on host

CS@AU Henrik Bærbak Christensen 45



Network drivers

• Any machine has several network interfaces

– Linux: ‘lo’ = Local Loopback, ‘ens32’ = Ethernet, …

• Docker will create new networks and attach containers to 

them

– By default they are not shared among containers

• docker run --network=container:daemon (image) cmd

– This container will now reuse the network of container named 

‘daemon’, i.e. they can communicate!

• Other options are

– --network=host reuse host’s network

– --network=my-network use named network

CS@AU Henrik Bærbak Christensen 46



Annoying Note

• This note has cost me a fair share of gray hair!

• What about firewalls?

– On my DigitalOcean machines I want a firewall up!

– Not my field of expertise, so ‘ufw’ = easy beginners linux firewall

• But Docker –p circumvents ufw and ufw does not know!

– Docker calls ‘iptables’ directly

• So – Docker –p punch a hole in the firewall that you 

cannot deny using ufw 

CS@AU Henrik Bærbak Christensen 47



Docker Volumes



Persistence

• A container is self-contained

– All ‘disks’ are virtual disks within the container

– Practical for single-file deployments ☺ ☺ ☺

– But... Not so practical for persistent data !!!

• Docker Volumes

– Is the solution to this issue – volumes are stored on host

– Switch ‘- v hostfolder:containerfolder’ means ”mount hostfolder

so it appears on path containerfolder’ in the container!

CS@AU Henrik Bærbak Christensen 49



Exercise

• What does the following do?

• One caveat…

– You have to know in which folder the service stores its persistent 

data

• MongoDB: /data/db

• MariaDB: /var/lib/mysql

• Etc. ect.

CS@AU Henrik Bærbak Christensen 50



Named Volumes

• Actually ‘-v’ and mounted volumes is so yesterday…

• Instead of mounting on the host, you can let Docker 

organize it using named volumes

– Required when deploying on swarms!

– So – we will return to that later…

CS@AU Henrik Bærbak Christensen 51



Summary

• Docker is a light-weight process VM technology based 

upon Linux

• It will form the backbone throughout this course ☺

• The learning curve is a bit steep – zillions of commands 

and parameters 

CS@AU Henrik Bærbak Christensen 52



Find it on the Web ☺

CS@AU Henrik Bærbak Christensen 53


