/v

AARHUS UNIVERSITET

Microservices and DevOps

DevOps and Container Technology
Docker

Henrik Baerbak Christensen

- The DevOps Problem

AARHUS UNIVERSITET
« Crossing boundaries, that is, moving code

‘.‘ User DB

2 .‘) o
[5] ® i i t | +pgve + v8 L L] . @ O
8 ° Static website postaresal +pgve + v o Queue Analytics DB 8T8 o
o . . : . = (4]
- nginx 1.5 + modsecurity + openssl + bootstrap 2 Redis + redis-sentine] hadoop + hive + thrift + OpenJDK _8 (f g
= 573
= % e Web frontend D5
0 Background workers = o o
=5)) : . Ruby + Rails + sass + Unicorn ~ g_
= Python 3.0 + celery + pyredis + libcurl + ffmpeg + libopencv + nodejs o9 .

§ + phantomjs ‘.. APl end p0|nt

Python 2.7 + Flask + pyredis + celery + psycopg + postgresql-client

Production Cluster

3
0 o
€. 0
=
= <
N
=]
o

Disaster recovery

= 2] - Development VM .

S , B p Public Cloud .
> 2 D

= g z ————
L = —— ———
55 5 E=m——w—= QA server -
= @ -= [
> C E

= @

(@
©
5
3.
<
R
o
@

Production Servers

Customer Data Center l; Contributor’s laptop Q

StiboSystems

ource: lorben Haagh, Stibosystems

CS@AU Henrik Baerbak Christensen 2

eV Was Solved in 1960’ies

AARHUS UNIVERSITET

A standard container that is loaded
with virtually any goods, and stays
sealed until it reaches final delivery.

...in between, can be loaded and
unloaded, stacked, transported efficiently
over long distances, and transferred from

one mode of transport to another

uai IO'JUI (4]} IHI Wil Is

¥]
o

CS@AU Henrik Baerbak Christensen 3

eV Docker = Container

AARHUS UNIVERSITET

Docker is a shipping container system for code

Queue ‘o Analytics DB

O 5 ;
® Static website %® User DB e Web frontend []

An engine that enables any pay /

to be encapsulated as a lightweight,
portable, self-sufficient container...

s Ai@endoidde

...that can be manipulated using standard
operations and run consistently on virtually

(%)

';c; any hardware platform

e

c

8 [—]

‘E ey

= e : =)
- '- Ny

& Development QA server Customer Data Public Cloud Production Contributor’s

iboSystems Center Cluster laptop

Source: http://www .slideshare.net/dotCloud/why-docker

CS@AU Henrik Beerbak Christensen 4

/v

Definition

AARHUS UNIVERSITET

CS@AU

A container is a standard unit of software that packages up code and all
its dependencies so the application runs quickly and reliably from one
computing environment to another. A Docker container image is a
lightweight, standalone, executable package of software that includes
everything needed to run an application: code, runtime, system tools,

system libraries and settings.
(Docker web site, 2019)

That is, not just program/code, but the required

execution environment

Henrik Baerbak Christensen 5

/v

AARHUS UNIVERSITET

Contalners are Virtual Machines

CS@AU Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

A Virtual Machine

« Hardware Abstraction
— Virtual processor, memory,
devices, etc.
 Virtualization Software

— Indirection: Decouple
hardware and OS

— Multiplex physical
hardware across guest
VMs

CS@AU Henrik B Christensen 7

/v Types of VMs

AARHUS UNIVERSITET

Smith & Nair 2005

Process VMs

System VMs

Two super classes
— Process VM o

Different
[SA

Different
[SA

Same

[
[
|
[
[
[
1
[
[
[
[
[
} ISA
[
[
|
[
[
[
[

— System VM Multiprogrammed Dynamic Classic system ~ Whole-system
systems translators VMs VMs
Same-ISA dynamic High-level-language] Hosted Codesigned
binary optimizers VMs I VMs VMs

Both can be sub classed based upon supporting
virtualization of same or different ISA (Instruction Set
Architecture).

/v Process / System VM

AARHUS UNIVERSITET
Guest Application process Application process
NN N NN N NN
Runtime
0 Ex: Java VM
Virtu:sil
L machine
Hardware
fHla
= - .
Applications Applications
Guest <
| § Ex: VMWare
VMM i System !
: virtual |
Host Hardware : machine E
Nl 20000000

CS@AU Henrik B Christensen 9

/v Moving the boundary

AARHUS UNIVERSITET
* Mission: To make virtualization lightweight

App 1 App 3

Bins/Libs

Bins/Libs Bins/Libs

Guest OS

Guest OS

App 1

Bins/Libs Bins/Libs Bins/Libs

Docker Engine

Guest OS

Hypervisor
Operating System

Host Operating System
Infrastructure

e

Infrastructure

L1E O

Traditional VMs Docker

CS@AU Henrik Beerbak Christensen 10

/v Classifying Docker

AARHUS UNIVERSITET
e A Same-ISA Process VM

Process VMs

System VMs

» Docker containers

provide a -

. . [SA
virtual Linux OS

Different
[SA

Different
[SA

Multiprogrammed Dynamic Classic system Whole-system
systems translators VMs VMs
Same-ISA dynamic High-level-language Hosted Codesigned
binary optimizers VMs VMs VMs

« Docker containers
typically execute a single process

 EX: Run a RabbitMQ broker, an apache web server, ...

/v

AARHUS UNIVERSITET

Docker Engine

The VMM of Docker

/v Images and Containers

AARHUS UNIVERSITET
« Core concepts in Docker
— Image The encapsulation of a VM

* |.e. the physical file that contains the VM — deployment unit
« Similar to a Java Jar file, DLL, .exe, war file, etc.

— Container The executing instance of an image
« Similar to an executing Java system, running the main() from the Jar
file

— Docker Engine The VMM program on Linux (Windows)
« That handles images and executes containers

/v Example

AARHUS UNIVERSITET

kd csdev@m51f19hbc: ~ - + x

File Edit Tabs Help
csdev@m51f19hbc:
I.-'_.'I:.'-.-' to f_" o =

csdev@m51f19hbc:

CS@AU

/v

AARHUS UNIVERSITET
o

File Edit Tabs Help
csdev@m51f19hbc

‘docker’ = invoke docker engine

‘run’ = instantiate container from
named image

‘hello-world” = named image
(parameter to ‘run’)

csdev@m51T19hbc

csdev@m51fl9hbc: ~

VeV Host and Guest

AARHUS UNIVERSITET
 Now, you have two "computers in one” — which is which?

« Host: The physical machine, providing CPU, RAM, etc.
« Guest: The virtual machine, handled by the VMM

» Of course, hosts often run multiple guests...

— And your laptop (host) runs M101 (guest) that is actually the
host of the Docker guest !

/v Linux LXC technologies

AARHUS UNIVERSITET

« Container
— Application running on a slice/view of a (shared) OS

* Linux LXC technology extended

— namespaces (isolation) provides an isolated share of OS
resources

— cgroups (configuration) provides resource management of OS
resources (RAM, cpu, ...)

/v

AARHUS UNIVERSITET

CS@AU

Docker Image

Henrik Baerbak Christensen

18

/v Images

AARHUS UNIVERSITET

* Onion file system: Copy-on-Write

— Every operation basically creates a new file layer

« Changing ‘hans.txt’ in layer N creates a (modified) copy of ‘hans.txt’
in layer N+1

Layer N+1

- Base images = ‘prebaked file system’ Layer N

— All layers up-till N forms an Image

Base Layer

* |.e. henrikbaerbak/cloudarch:el6.1
— Ubuntu 16.04 LTS server base image
— Java, Ant, lvy, Git, ... are all layered on top

CS@AU Henrik Baerbak Christensen 19

/v Building Images

AARHUS UNIVERSITET
 How do you build a traditional server?

— Unbox the machine, power up, install Linux, install application

suite and libraries, execute server software

 Lifecycle - classic
— container = instantiate(imagel)
« Docker run ...
— modify container
« Install software, change files, add stuff, ...

— commit container — image2
« Docker commit

CS@AU Henrik Baerbak Christensen

Install your app
‘Freeze’ the machine

20

/v

AARHUS UNIVERSITET

CS@AU

Dockerfiles

Infrastructure-as-code

Henrik Baerbak Christensen

21

/v

AARHUS UNIVERSITET

Building Images

 Lifecycle — infrastructure-as-code
— You automate the install script: Dockerfile

« Example: henrikbaerbak/jdk8-gradle

Usage: docker build -t henrikbaerbak/jdk8-gradle -f (thisfile) .

FROM ubuntu:18.84

LABEL maintainer="HenrikBaerbakChristenen_hbcj@gcs.au.dk"”

RUN apt-get update && 1\

apt-get upgrade
apt-get install
apt-get install
need curl for
apt-get install

-y &N

-y openjdk-8-jdk &&

-y gradle && Y

healthchecks

-y --no-install-recommends curl && Y

apt-get autoremove -y &&
apt-get autoclean -y &&
rm -rf fvar/lib/apt/lists/*

CS@AU

Henrik Baerbak Christensen

22

/v

AARHUS UNIVERSITET
o State yO u r base i m ag e LABELum:';n:;im;r*="HenrikBaerbakChristenen_hbc@cs.au.dk"

RUN apt-get update && \
apt-get upgrade -y && \

.
[I n If r If apt-get install -y openjdk-8-jdk && \
apt-get install -y gradle && \

need curl for healthchecks

Anatomy

Usage: docker build -t henrikbaerbak/jdk8-gradle -f (thisfile) .

apt-get install -y --no-install-recommends curl &&
apt-get autoremove -y && \

 Install software e e
— WORKDIR set working directory in container
— COPY copy <src> to <dest> (from host to cnt.)
— RUN run command at build time
« Configure
— EXPOSE expose port to the outside
* EXxecute

— (ENTRYPOINT) state default script to run
— CMD run command at run time (container process)

et Building Image

AARHUS UNIVERSITET

update

-t = tag resulting image with given name
-f = dockerfile (default: Dockerfile)

Imhotep Henrik Baerbak Christensen 24

/v Building Image
AARHUS UNIVERSITET
« When ‘build’ is executed the host and the container co-

exists and you typically copy files from host to image

Host Image

~/cave/build.gradle /root/cave/build.gradle

* Dockerfile is typically in the project root folder!
— Version controlled along with project !!!
— Modifiability QA: Group related things together — Cohesion

CS@AU Henrik Baerbak Christensen 25

/v

AARHUS UNIVERSITET
=== Build 0K Case MariaDB with initial contents
 Populate a DB

—_ F)()[)lJ|EitEE__(jt).[))/ # MariaDB running on 3306 with ok case credentials

. # Then
- Runs against DB on |
d build . -t henrikbaerb ilate-ok-db:vl
|OC&|hOSt3306 # docker run -ti --rm --net L henrik /populate-ok-db:vl

 EXxercise:
LABEL maintainer="HenrikBaerbakChristenen hbc@cs.au.dk"
— What happens? ENV LANG C.UTF-3

ENV LC ALL C.UTF-8

FROM ubuntu:18.084

- population scripts and run them
COPY util/gen-userdb /makedb
Install all python3 requiremenetnsldjh
RUN apt-get update

RUN apt- install -y python3-pip
RUN pi install pymysql

Run the script when container starts
e Ti : :
O ru n CMD python3 populate db.py

run -ti --rm --network host henrikbaerbak/populate-ok

CS@AU Henrik Baerbak Christensen 26

V4V CMD vrs RUN

AARHUS UNIVERSITET
« CMD = Execute
« RUN = Execute
 What is the difference???
* Big!

— RUN Execute at build time
« That is, during the ‘docker build ." phase

— CMD Execute at container run time
 That is, when the ‘docker run ...’ is executed

eV No No’s

AARHUS UNIVERSITET

 Much to my dislike, Docker has opted for using a
.dockerignore file

— Just like you have a .gitignore file
» Wildcard specs of files not to add to git staging area

— "Ups, by the way, | regret copying *.BAK files into the image,
please remove them again”

Do not use .dockerignore !!! Except...

Imhotep Henrik Baerbak Christensen 28

/v Infrastructure-as-code

AARHUS UNIVERSITET

 DevOps is about speed and agility in going from Dev to
Ops

e Coding infrastructure logic: The programming of logic
for the deployment of services. Traditionally han-
dled by manual procedures (installing, configuring,
and linking services), but in face of large-scale deploy-
ments, this too must be coded. Example: Develop-
ing scripts that start the application server, inventory
service and associated database, initialize them, and
connect them correctly—i.e. create a staging environ-
ment.

* Dockerfiles are one big piece of this puzzle: Installing the
software on a server, is coded in a programming
language, iIs under version control with your source !

CS@AU Henrik Baerbak Christensen 29

/v MultiStage DockerFiles

AARHUS UNIVERSITET
 From Engine 17.05+
* |dea

— Build in steps
« Step1: compile and assemble deployment unit (‘jar’ in Java)
« Step2: produce container with just the jar and ‘execute’ CMD

FROM golang:1.7.3 AS builder

WORKDIR fgo/src/github.com/alexellis/href-counter/

RUN go get -d -v golang.org/x/net/html

COPY app.go

RUM CG0 ENABLED=2 G00S=linux go build -a -installsuffix cgo -o app .

FROM alpine:latest

RUM apk --no-cache add ca-certificates

WORKDIR /root/

COPY --from=builder /go/src/github.com/alexellis/href-counter/app .
cMD [*./app"]

CS@AU Henrik Baerbak Christensen 30

/v Example Exercise

AARHUS UNIVERSITET
 From the mandatory project

e Stepl:
— Install the full SkyCave system

— Finally RUN gradle to produce a ‘fatJar’ with full system in a
single deployment unit

e Step2:
— Copy the fatJar from stepl and only that!
— CMD to start skycave daemon using the fatJar

/v

AARHUS UNIVERSITET

Docker Hub

Sharing Images

J Docker Hub

AARHUS UNIVERSITET
« ‘Bootstrapping’ — where do | get the base layer from?

« Docker Hub is a public repository of a lot of (base)
Images

Wdockerhub Q Explore Repositories Organizations GetHelp henrikbaerbak ~ .

@ Docker EE &0

tomeat
tomee
Filters Communit Clear search Most Popular -
Docker Certified @ jelastic/tomcat
& Docker Certifiec cfie/tomcat-resource 10M+ 2.3K

Downloads Stars
rightctrl/tomcat °

Images

bitnami/tomcat 1 open source implementation of the Java Servlet and JavaServer Pages technologies
Verified Publisher
Docker Centified Ang ve Show all 20891 hits in Community
Gontent

Official Images @
Officiel images Published By Docker

tomee 10M+ 64

Categories @ Tomitribe Downloads Stars

Updated 22 minutes ago
Analytics

Apache TomEE is an all-Apache Java EE certified stack where Apache Tomcat is top dog.
Application Frameworks

Linux

Application Infrastructure

Annlication Services

CS@AU Henrik Baerbak Christensen 33

/v

AARHUS UNIVERSITET

Docker Hub

 The GitHub / Maven Repo movement

— ‘push’ your commits to a cloud base storage service

« Mvnrepository / github / bitbucket ...

— ‘pull/clone’ from there

 Docker Hub

— Register as a user (free)
— Push your image to docker hub

— Done!

CS@AU

Henrik Baerbak Christensen

Explore Official Repositories

34

/v Image Naming

AARHUS UNIVERSITET
* Images can be called any name
— Foobar, tmp, fiskesovs

 However, if you have to push them to the hub, they have
to follow the convention:

— username/repository:tag

* Only one docker hub repository can be private

— | have called mine for ‘private’, and then use tags to differentiate
different teaching images from each other...

/v

AARHUS UNIVERSITET

Container Lifecycle Management

Docker 101

/v We need to...

AARHUS UNIVERSITET = casormiree

File Edit Tabs Help
csdev@m51f19hbc:~-$ docker help

* Build images
. Execute containers [
 Monitor containers
« Kill containers

to a running contalner

CS@AU Henrik Baerbak Christensen 37

/v

AARHUS UNIVERSITET
. ‘pull

e ‘push’

saev.~%

CS@AU

File Edit Tabs Help

docker pull nginx

Images

pull a named image from Hub

push a named image to Hub

saip@csdev: -

Henrik Baerbak Christensen 38

eV Containers

AARHUS UNIVERSITET

saip@SaipDev:~/proj/cave$ docker run -p 4567:4567 -d --name tml6-server henrikbaerbak/tml6
64b220f540135520f5afad4a8282/9D/aCs11£4090/4C4000TY LEYUDED402aC0OOV

saip@SaipDev:~/proj/cave$ docker ps

CONTAINER ID IMAGE COMMAND CREATED SIS PORTS NAMES
64b220f54013 henrikbaerbak/tm16 "ant server" 4 seconds ago Up 3 seconds 0.0.0.0:4567->4567/tcp tml6-server
saip@SaipDev:~/proj/cave$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

64b220f54013 henrikbaerbak/tml6 "ant server"” 9 seconds ago Up 9 seconds 0.0.0.0:4567->4567/tcp tml6-server
saip@SaipDev:~/proj/cave$ docker images | grep tml6

henrikbaerbak/ Latest 521f020565b9 3 weeks ago 534.8 MB

saip@SaipDev:~/proj/cave$ docker rm -f tml6-server

tml6-server

saip@SaipDev:~/proj/caves ||

* run = (pull image), and start container (-d = in background)
 ps =see all running containers (-a = all, also the dead ones)
* images = see all images

* rm =remove container (-f =force, even if currently running)

OldSchool: docker ps =

NewSchool: docker container Is

CS@AU Henrik Baerbak Christensen 39

VeV Docker run

AARHUS UNIVERSITET

* Docker run (image) (command parameters)
— Acceptable parameters defined by the image!

« Zillion parameters, the most important are
— docker run —d . -d = daemon mode / server
— -ti: terminal interactive, so you can interact!
— --name (myname): give it a name
— -p (host):(container): port-mapping
— --network=(network): define network to use
« See later...

A Containers

AARHUS UNIVERSITET
* ‘logs’ = See the log (shell output) of running container
* ‘logs —f' = Tails the log (keeps running)

csdev@m31: X |csdev@m31:

CS@AU Henrik Baerbak Christensen 41

eV Containers

AARHUS UNIVERSITET
« A container is very opaque ®
— What the heck is going on inside it ???
— Where are the files located???

« ‘exec -ti (container) bash’
— Is: execute ‘bash’ interactive TTY in a running container

CS@AU Henrik Baerbak Christensen 42

/v

AARHUS UNIVERSITET

Docker Networking

Microservices communicate, right?

/v Networking

AARHUS UNIVERSITET
 Distributed systems rely on networking!

« By default, network is an isolated resource in Docker!

— Ten Apache web servers, all listening on port 80, on the same
machine!

« Two core technologies
— Port forwarding
» For ‘exposing’ container services to the outside/host

— Docker network drivers
« For ‘binding’ container services together securely

/v Port Forwarding

AARHUS UNIVERSITET

« dockerrun-p 7777:6745 ...

— Bind container port 6745 in container to host’s external port 7777

— So if you connect to ‘localhost: 7777’ you will actually
communicate with port 6745 of the service running in the docker
container

CS@AU Henrik Beerbak Christensen 45

eV Network drivers

AARHUS UNIVERSITET

* Any machine has several network interfaces
— Linux: ‘lo’ = Local Loopback, ‘ens32’ = Ethernet, ...

« Docker will create new networks and attach containers to
them
— By default they are not shared among containers
e docker run --network=container:daemon (image) cmd
— This container will now reuse the network of container named
‘daemon’, i.e. they can communicate!
« Other options are
— --network=host reuse host’s network
— --network=my-network use named network

/v Annoying Note

AARHUS UNIVERSITET
* This note has cost me a fair share of gray hair!
 What about firewalls?

— On my DigitalOcean machines | want a firewall up!
— Not my field of expertise, so ‘ufw’ = easy beginners linux firewall

« But Docker —p circumvents ufw and ufw does not know!
— Docker calls ‘iptables’ directly

S0 — Docker —p punch a hole in the firewall that you
cannot deny using ufw ®

/v

AARHUS UNIVERSITET

Docker Volumes

eV Persistence

AARHUS UNIVERSITET

« A container is self-contained
— All ‘disks’ are virtual disks within the container
— Practical for single-file deployments © © ©
— But... Not so practical for persistent data !!!
 Docker Volumes
— Is the solution to this issue — volumes are stored on host

— Switch ‘- v hostfolder:containerfolder’ means "mount hostfolder
so it appears on path containerfolder’ in the container!

eV Exercise

AARHUS UNIVERSITET
« What does the following do?

docker run -d --name influxdb --network=pe-network -p 8886:8886 -v ~/influxdb:/var/lib/influxdb
influxdb:1.4-alpine

* One caveat...
— You have to know in which folder the service stores its persistent

data

« MongoDB: /data/db

« MariaDB: Ivar/lib/mysql
» Etc. ect.

CS@AU Henrik Baerbak Christensen 50

eV Named Volumes

AARHUS UNIVERSITET
« Actually -v' and mounted volumes is so yesterday...

* Instead of mounting on the host, you can let Docker
organize it using named volumes
— Required when deploying on swarms!

— So — we will return to that later...

Y Summary

AARHUS UNIVERSITET

» Docker is a light-weight process VM technology based
upon Linux

« It will form the backbone throughout this course ©

« The learning curve is a bit steep — zillions of commands
and parameters ®

v’ Find it on the Web ©

AARHUS UNIVERSITET

| Docker Cheat Sheet

——rm remove comainer autormatically after it exits
—it connect the container to terminal
——name web name the container
—p 5000 :80 expose port 5000 externally and map to port 80
—w ~/dev: /code create a host mapped volurmea inside the containar
alpine: 3.4 the image from which the container is instantiated
/bin/sh the command to run inside the container

Stop a running containar through SIGTERM
docker stop w=bh

Stop a running container through SIGKILL
docker kill web

BUILD Create an overlay network and spedfy a subnet
docker network create -—suobmet 10.1.0.0/24
——gateway 10.1.0.1 -d owverlay mynet

Build an image from the Dockerfile in the current Pull an image from a registry List the networks

directory and tag the image docker pull alpine:3. 4 docker network la

docker build —t myapp:1.0
Retag a local image with a new image name and tag List the running containers

List all images that are locally stored with the Docker docker tag alpine:3.4 myrepo/myalpine -3 4 docker ps

engine

docker images Log in to a registry [the Docker Hub by default] Delete all running and stopped containars
docker login my. registry.com:8000 docker rm —f §(docker pa -agq)

Delete an image from the local image store

docker ymi alpine-3 4 Push an image to a registry’ Create a new bash process inside the container and connect
docker push myrepc/myalpine:3 .4 it to the terminal

docker exec —it web bash

Print tha last 100 lines of a containers logs
docker logs ——tail 100 w=bh

CS@AU Henrik Beerbak Christensen 53

